Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

نویسندگان

  • M. R. Amini
  • J. Simon
  • S. Nemat-Nasser
چکیده

0167-6636/$ see front matter 2009 Elsevier Ltd doi:10.1016/j.mechmat.2009.09.009 * Corresponding author. Address: University of Ca Mechanical and Aerospace Engineering, 4909 Eng 9500 Gilman Drive, La Jolla, CA 92093-0416, USA. T E-mail address: [email protected] (S. Nemat-Nasser). Results of computationalmodeling and simulation of the response ofmonolithicDH-36 steel plates and bilayer steel-polyurea plates to impulsive loads in direct pressure-pulse experiments (Amini et al., in press-b), are presented anddiscussed. The corresponding experiments and their results are presented in an accompanying paper (Amini et al., 2010). The entire experimental setup is modeled using the finite-element code, LS-DYNA, in which a physics-based temperatureand strain rate-sensitive constitutive model for DH-36 steel, developed by Nemat-Nasser and Guo (2003b) and an experimentally supported temperature-, rate-, and pressure-sensitive constitutive model for polyurea, developed and incorporated into the computer code, LS-DYNA, by Amirkhizi et al. (2006), have been implemented. The transient response of the plates under impulsive pressure loads is studied, focusing on the effects of the relative position of polyureawith respect to the loading direction, the thickness of the polyurea layer, and the polyurea-steel interface bonding strength. The numerical simulations of the entire experiment support the experimentally observed results reported by Amini et al. (2010). 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

We summarize the results of the response of monolithic steel plates and steel-polyurea bilayer plates to impulsive blast loads produced in direct pressure-pulse experiments, focusing on the deformation and failure modes of the plates. In these experiments, an impulsive pressure pulse is applied to a steel plate through water or soft polyurethane that simulates shock loading with a peak pressure...

متن کامل

Numerical modeling of response of monolithic and bilayer plates to impulsive loads

In this paper, we present and discuss the results of our numerical simulation of the dynamic response and failure modes of circular DH-36 steel plates and DH-36 steel–polyurea bilayers, subjected to impulsive loads in reverse ballistic experiments. In our previous article, we reported the procedure and results of these experiments [MR Amini, JB Isaacs, S Nemat-Nasser. Experimental investigation...

متن کامل

Experimental investigation of response of monolithic and bilayer plates to impulsive loads

This article presents the results of a series of experiments performed to assess the dynamic response of circular monolithic steel and steel–polyurea bilayer plates to impulsive loads. A convenient technique to enhance the energy absorption capability of steel plates and to improve their resistance to fracturing in dynamic events, is to spray-cast a layer of polyurea onto the plates. Since poly...

متن کامل

Numerical study of the effect of polyurea on the performance of steel plates under blast loads

We present the results of our numerical simulation of the dynamic response and deformation of 1 m diameter circular DH-36 steel plates and DH-36 steel-polyurea bilayers, subjected to blast-like loads. Different thicknesses of the polyurea are considered and the effect of polyurea thickness on the performance of steel plates under blast loads is investigated. For each polyurea thickness, we have...

متن کامل

Failure of an Impulsively-loaded Composite Steel/polymer Plate

The concept of spraying thick layer of polymer material onto metal plate has recently received considerable interest in many civilian and military applications. There are numerous analytical and numerical solutions for single thin plates (membrane) made of either a steel or an elastomer. However, solutions for composite plate made of both of the above constituents are lacking. The objective of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010